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Abstract
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ignaling and metabolic pathways with prostate cancer and to describe data evaluating racial variation in sex steroid hormone pa
ossible explanation for the notably higher risk of prostate cancer in African-American men compared to white or Asian men. Alth
teroid hormones likely contribute to the growth and progression of prostate cancer, associations between hormones and prostat
cross the range of normal levels have been difficult to reliably demonstrate epidemiologically. Methodologic issues no doubt hav
etection of these associations difficult. Of particular importance are (1) the inadequacy of measuring circulating hormones in midd
urrogate for the exposure in the target cells in the prostate at the relevant time in life and (2) the current inability to integrate across c
f the sex steroid hormone signaling pathway to fully capture target cell androgenic and estrogenic stimulation. Although the ap
valuating polymorphisms in genes involved in sex steroid hormone signaling or metabolism as a way to minimize some of the is
irect measurement of hormones is logical, the findings among these studies are somewhat difficult to reconcile as well. The prob
hanging case mix due to screening for elevated PSA, small sample sizes increasing the likelihood of false negative and false pos
he controls and their allele frequencies not being representative of the population at risk, and lack of knowledge of the functional co
f a polymorphism in relation to other polymorphisms in that gene or without consideration of other genes involved in the same
ay be contributory. The primary result of the Prostate Cancer Prevention Trial confirms that intraprostatic dihydrotestosterone le
ormal range indeed do contribute to the growth of prostate adenocarcinoma. However, the secondary result of higher-grade dise

n the finasteride arm coupled with clinical studies showing higher grade disease in non-metastatic cases with lower serum andro
pathological artifact or detection bias in the finasteride arm, possibly suggests a complex relationship between androgens and

ersus differentiation of a prostate tumor. Finally, racial variation in components of the sex steroid hormone pathway do appear t
hether the extent of the variation is adequately great such that it accounts for some of the substantial differences in prostate canc
mong blacks, whites, and Asians is unclear.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Sex steroid hormones contribute to the growth and
rogression of prostate cancer, but whether the range of

∗ Corresponding author. Tel.: +1 410 614 9674; fax: +1 410 614 2632.
1 Tel.: +1 617 432 1839; fax: +1 617 432 2435.

normal levels is associated with prostate cancer risk
been difficult to reliably demonstrate. This review discu
the epidemiologic literature on the association of circula
concentrations of sex steroid hormones and polymorph
in components of their signaling and metabolic pathw
with prostate cancer and presents possible explanatio
the inconsistencies among these studies. Also desc
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are epidemiologic data suggesting that racial variation in
sex steroid hormones and their signaling pathways may, in
part, account for the 60% higher prostate cancer incidence
in African-American men and the 38% lower incidence in
Asian-American men compared to white men[1].

2. Sex steroid hormones

2.1. Androgens

Androgens are clearly important in the development, mat-
uration, and the maintenance of the prostate, affecting both
the proliferation and differentiation status of the luminal ep-
ithelium. Castration results in the involution of prostate gland
as a result of diffuse atrophy primarily of the luminal epithe-
lial cells, but not the stromal cells[2]. The replacement of
androgen results in the proliferation of the epithelial cells, but
once normal volume is attained additional androgenic stim-
ulation does not further increase the size of the gland[3] as a
result of a balance of proliferation and apoptosis[4]. Andro-
gens also are determinants of the differentiated phenotype.
Androgens contribute to the progression of prostate cancer
in men. Indeed, blocking androgen production is commonly
used to treat metastatic prostate cancer and is often success-
f until
a

the
p ween
c ancer
i logic
s estos
t stos-
t ediol
g ones
( ood
s nths
t in a
s osed
w ch
h cur-
r re not
r limit
t or-
m o
m use o
m con-
d
a erage
w n the
a cer.

pub-
l et al.
[ (ra-
t % CI
0 s and

2107 controls) or dihydrotestosterone (ratio of means = 0.98,
95% CI 0.94–1.03 in five of the studies consisting of 636
cases and 1040 controls) levels between men who were
subsequently diagnosed with prostate cancer and controls
was detected, except possibly for a slightly higher concen-
tration of androstanediol glucuronide in the cases (ratio
of means = 1.05, 95% CI 1.00–1.11 in five of the studies
consisting of 644 cases and 1048 controls)[24]. Among
these prospective studies, only a case-control study nested
in the Physicians’ Health Study (n= 222 pairs) observed the
hypothesized direction of associations for the sex steroid
hormones measured: testosterone and androstanediol glu-
curonide were statistically significant positively associated
with prostate cancer, and estradiol and sex hormone binding
globulin were inversely associated with prostate cancer[10].
In that prospective, study the mean time from blood draw to
diagnosis was 6 years, and most of the cases were diagnosed
because of an abnormal digital-rectal examination or symp-
toms during the era before the widespread use of screening
for elevated serum PSA concentration. These findings were
apparent only after simultaneous adjustment for all of the
measured hormones and sex hormone binding globulin by
multivariable analysis. In some of the prospective studies,
the risk of prostate cancer was greater for a higher ratio
testosterone to dihydrotestosterone[5,7,10,14].
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Although androgens are important in maintaining
rostate gland, whether an association exists bet
irculating concentrations of androgens and prostate c
ncidence has been difficult to demonstrate in epidemio
tudies. More than a dozen studies have measured t
erone, the major intraprostatic androgen dihydrote
erone, the dihydrotestosterone metabolite androstan
lucuronide, estrogens, or concentrations of other horm
e.g., prolactin, leutinizing hormone, gonadotropin) in bl
amples collected from middle-age and older men mo
o years prior to their diagnosis of prostate cancer and
ample in men from the same cohort who were not diagn
ith prostate cancer[5–19]. Case-control studies in whi
ormone concentrations were measured in men who
ently had prostate cancer and in a comparison group a
eviewed here because of methodologic issues that may
heir interpretability, such as the possible inhibition of h
one secretion by extant disease[20,21], use of cases wh
ay have already been treated for prostate cancer, the
en who clinically have benign prostatic hyperplasia, a
ition that is also mediated by sex steroid hormones[22,23]
s controls, and the use of younger controls, who on av
ould have higher testosterone concentrations than i
ge group of men at risk for a diagnosis of prostate can

Considering the 10 prospective studies that were
ished by 1998 in a meta-analysis performed by Eaton
24], no difference in pre-diagnostic serum testosterone
io of mean testosterone in cases to controls = 0.99, 95
.95–1.02 in eight of the studies consisting of 817 case
-
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Why has it been so difficult in well-designed epidem
ogic studies to demonstrate that higher androgen con
rations are associated with a higher risk of prostate ca
erhaps most important is that it remains unsettled to
xtent circulating concentrations of androgens correlate

ntraprostatic levels. Of particular concern is the difficult
apturing a relevant measure of dihydrotestosterone, w
inds with greater affinity to the androgen receptor than

estosterone, and thus is more androgenic. Circulating
rotestosterone concentration itself may not be the op

ndicator of intraprostatic levels because of extra-pros
ontributions of this androgen from the testes as well as
kin and liver (catalyzed by 5�-reductase type 1). Circulatin
oncentration of androstanediol glucuronide has been
s an indicator of the activity of 5�-reductase type 2, th
nzyme that catalyzes the conversion of testosterone to
rotestosterone in the prostate[25], although whether seru
ndrostanediol glucuronide concentration correlates wit

raprostatic dihydrotestosterone level has not yet been pr
Several other issues in the measurement of andro

hould be considered as possible explanations for the ina
o detect associations with prostate cancer. (1) Whether
le determination of serum androgens in middle or olde

s representative of time-averaged or maximum levels
he etiologically relevant time of life is unknown. Acros
hort time span in middle age, intra-individual variability
ndrogen levels does not appear to be large. For examp
study in which blood was draw from a group of 144 m

n two occasions on average 3 years apart, the corre
etween the two measures of the hormones concentr
ere 0.68 for total testosterone, 0.66 for dihydrotestoste
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0.74 for androstanediol glucuronide, 0.55 for estradiol, and
0.74 for sex hormone binding globulin (allp< 0.0001), af-
ter adjusting for age and race[18]. However, measurement
in middle age ignores the potential for hormonal variation
in utero at the time the prostate is formed, at puberty when
the prostate matures to its adult size and functionality, and
does not capture the slope of decline in androgens from
early adulthood to older years. (2) If time of day of blood
collection is not standardized for subjects then extraneous
variability due to the pulsatile production of testosterone by
the testis may obscure associations. However, despite these
similar measurement issues and possible additional com-
plexity of variation in duration of exposure to hormones by
age at onset of menarche and menopause and the influence
of reproduction on hormone levels, the association between
estradiol and breast cancer has been fairly well established
in prospective epidemiologic studies[26,27]. So although
testosterone is likely important in the etiology of prostate can-
cer, the nature of the association is unlikely to simply be that
chronic high testosterone exposure leads to greater prolifer-
ation of at risk prostate cells leads to a higher risk of prostate
cancer.

Another methodologic issue of possible importance is the
need to mutually statistically adjust the hormones and sex
hormone binding globulin for one another to estimate the
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the case[30]. Before PSA screening was widely used in the
US (pre-PSA era), cases were diagnosed because they were
palpable or symptomatic, whereas in the PSA era cases are
generally organ-confined and of small volume. These early
lesions, many of which may never have been detected during
a man’s lifetime if the PSA test had not been done, do not nec-
essarily have the same hormonal etiology as those cases that
are detected clinically. Some of these screen-detected early
lesions may be susceptible to the effects of androgens at a
point later in their natural history, but because their natural
history was interrupted by screening associations could not
be detected.

Likely, because the prospective studies conducted to date
have been modest in size, whether androgens may be more
influential on the development of prostate cancer in certain
subgroups of men has been rarely examined. How these men
potentially at higher risk should be defined is not immedi-
ately obvious. Based on findings in some of our work in the
Health Professionals Follow-up Study on obesity[31] and
energy balance[32], both of which may influence hormonal
systems, potentially susceptible groups may include men who
are relatively young when diagnosed with prostate cancer or
men who have a father or brother with prostate cancer. In ad-
dition to differential susceptibility among subgroups, the ef-
fects of androgens may be more evident in certain subgroups
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nbound) and is available to cross the cell membrane to

arget cells. Dihydrotestosterone, testosterone, and est
s well as other 17�-hydroxysteroids all compete for no
ovalent binding to sex hormone binding globulin, a m
arrier protein in circulation. Lack of mutual statistical
ustment was put forth by Gann et al. as one possible
lanation for the null results in the other prospective stu

10]. Indeed, in a reanalysis of population-based case-co
ata[28], Wolk et al. reported that after mutually statistica
djusting testosterone, estradiol, and sex hormone bin
lobulin, evidence for a positive association for testoste
nd prostate cancer emerged, although it was not statist
ignificant[29]. However, no difference in the association
estosterone before and after mutual statistical adjustme
stradiol and sex hormone binding globulin was observ
Finnish cohort study[14].
Additional analytical issues also need to be considere

hy findings for androgens and prostate cancer risk am
tudies have been inconsistent and mostly not compa
ith the androgen hypothesis. All of these studies have
ampered by the evaluation of a limited number of com
ents of a large, complex and interrelated hormonal pro

ion, signaling, and metabolic pathway. The productio
ndrogens is regulated by a negative feedback system
ure normal range concentrations and bioavailability. T
hether an androgen level within the normal range in
ajority of men is contributory to prostate cancer ris
uestionable. An additional analytical issue that has eme
ecently because of the routine use of screening for ele
erum PSA in the US is the changing mix of the natur
ecause of less obfuscation by competing mechanism
xample, the association of androgens with prostate c
ight be more obvious in leaner men than in overweight
bese men[31] because in the latter men multiple physiolo
ystems are perturbed, including insulin and glucose co
poorer) and sex steroids (ratio of estrogens to androge
reases). The net effect of these perturbations in obese
oor insulin and glucose control, which would be predic

o increase risk of prostate cancer, and increased ratio
rogens to androgens, which would be predicted to dec
isk of prostate cancer, would tend to obscure associa
etween androgens and prostate cancer. Differences a

he prospective studies on androgens and prostate can
he age distribution at diagnosis, the proportion with a p
ive family history, and the extent of overweight and obe
ay explain some of the variability in findings among th

tudies.
Acknowledging the array of measurement and ana

al issues, nevertheless prospective epidemiologic st
verall slightly hint that men who would be predicted
ave higher intraprostatic levels of dihydrotestosterone b
n higher levels of androstanediol glucuronide appea
ave a higher risk of prostate cancer. This hint of a lin
ow supported by recent findings from the Prostate Ca
revention Trial. In that trial, 18,882 men aged 55+ y
ld (median = 63 years) who had serum PSA concentra
3 ng/mL and a normal digital-rectal examination and n
ad been diagnosed with prostate cancer were random

o take finasteride (5 mg/day), an inhibitor of 5�-reductas
ype 2, for 7 years or to placebo. The men underwent an
creening for prostate cancer by PSA test and digital r
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examination, and if either was abnormal a biopsy was per-
formed. At the end of the 7th year, the men who had not been
diagnosed with prostate cancer during the course of the trial
underwent biopsy irrespective of indication. At the time that
the trial was stopped early by the Data Safety and Monitor-
ing Board (because the result would not have changed with
continuation to the planned end), the period prevalence of
prostate cancer was 24% lower in the finasteride group than
in the placebo group[33]. Because of the relatively short in-
terval between the beginning and end of the trial (86% had
completed the trial when it was stopped, so slightly less than
7 years on average), it is likely that many of the men ulti-
mately diagnosed with prostate cancer likely already had one
or more foci in place at the start of the trial. Thus, the primary
result of the trial indirectly suggests that dihydrotestosterone
is at least important in the promotion of the growth of existing
small prostate tumors.

Interestingly, in the Prostate Cancer Prevention Trial, the
period prevalence of higher-grade cases (Gleason sum 7–10)
was greater in the finasteride arm than in the placebo arm.
Of the 803 cancers detected in the 4368 men randomized
to the finasteride arm, 280 were Gleason≥7, whereas of
the 1147 cases detected in the 4692 men randomized to the
placebo arm, 237 were Gleason≥7 [33]. Histologic grade
(e.g., Gleason score) reflects the differentiation state of that
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to men with lower-grade disease[35]. Possibly compatible
with these findings are results from the Health Profession-
als Follow-up Study, which despite showing no association
between testosterone and total prostate cancer and for both
higher and lower stage disease, showed a direct association
of testosterone with low-grade prostate cancer, but an inverse
association of testosterone with high-grade prostate cancer
[18]. However, not all of the clinical studies are in agree-
ment: a study in 370 prostate cancer cases without metastases
showed no relation between serum testosterone (or estradiol)
and Gleason grade (or stage)[39].

Attempts to isolate the possibly independent effects of
androgens on histologic grade of prostate cancer from their
effects on the tumor development are needed in future epi-
demiologic studies on the androgen hypothesis. For example,
to partially replicate the context of the Prostate Cancer Pre-
vention Trial, the association of serum androgens with high-
grade versus low-grade disease should be evaluated among
men with similarly low stage disease (e.g., T1c).

2.2. Estrogens

At the outset of most of the published studies, it was hy-
pothesized that estrogens would protect against prostate can-
cer via inhibition of growth of prostate epithelial cells. As is
t e on
t ossi-
b sug-
g state
c lob-
u as
n h
o diol
c tive.
T ated
t r. In a
p posi-
t state
c ted
i 2-
h ci-
a r
m er is
e

the
e , may
b tradiol
i s for
e lity.
T tially
i cribed
f ddle
a ents
o pply
t when
e ncer
issue; that is, maintenance of the normal functional a
ecture of the tissue. However, much discussion has en
bout whether finasteride merely altered the visual ap
nce of the epithelium such that pathologists perceive w
istological patterns or whether finasteride enhanced th
elopment of high-grade disease[34]. To explain the latte
ossibility, the action of dihydrotestosterone on transfo

ng prostate epithelium must be considered: normal r
ntraprostatic levels of dihydrotestosterone may preven
edifferentiation of prostate epithelium within the nascen
or by contributing to the maintenance of the epithelial p
otype via the activation of the androgen receptor and

oint transactivation of the transcription of genes that en
roteins normally produced by luminal epithelial cells. Th

n the setting of low intraprostatic dihydrotestosterone du
nasteride treatment, the pressure to maintain differenti
ay be lost. This hypothesis remains to be evaluated.
If not due to pathology artifact, or to diction bias,

ndings for high grade-disease in the men with a finaste
nduced reduction in intraprostatic dihydrotestosterone le
n Prostate Cancer Prevention Trial may have been pred
rom earlier clinical studies of non-metastatic prostate
er in which men with lower serum testosterone[35,36] or
ree testosterone[37,38] had a higher mean Gleason sc
han did men with normal levels. Low was defined ba
n clinical norms. Lower circulating levels of testoster
ossibly indirectly indicate lower prostatic levels of dih
rotestosterone, although how well circulating and intra
tatic androgen levels correlate is unresolved. In add
o having lower testosterone concentrations, men with h
rade disease also had lower mean estradiol levels com
he epidemiologic literature on androgens, the literatur
he association of circulating estrogens is equally or p
ly even more confusing. The Physicians’ Health Study
ested that estradiol was inversely associated with pro
ancer risk after adjusting for sex hormone binding g
lin and androgens[10]. The association for estradiol w
ot strictly decreasing[10]; risk was equally lower in eac
f the top quartiles, possible suggesting that low estra
ontributes to risk, rather than high estradiol is protec
he findings from other epidemiologic studies have indic

hat estrogens may increase the risk of prostate cance
rospective study in Rancho Bernado, CA, suggestive

ive associations of plasma estradiol and estrone with pro
ancer were observed[6]. In a case-control study conduc
n two New York counties, higher urinary excretion of
ydroxyestrone relative to 16�-hydroxyestrone was asso
ted with a lower risk of prostate cancer[40]. The forme
etabolite has no estrogenic activity, whereas the latt
strogenic[40].

Explanations for the variability in findings among
pidemiologic studies on estrogens, as for androgens
e, in part, related to measurement issues. Plasma es

s present in pg/mL concentrations in men. Early assay
stradiol in men had poor sensitivity and poor reliabi
hird generation radioimmunoassays have substan

mproved measurement. The measurement issues des
or androgens, including a single measurement in mi
ge and evaluation of only a small number of compon
f the sex steroid hormone-signaling pathway, also a

o estrogens. As described for studies of androgens,
valuating the relation of estrogens to risk of prostate ca
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mutual statistical adjustment of androgens, estrogens, and
sex hormone binding globulin is necessary. Because of
the differential in binding affinities, a higher androgen
level means greater displacement of estrogens yielding a
higher bioavailable fraction of estrogens. Complicating
the measurement of estrogens and the interpretation of the
epidemiologic studies on serum steroid hormones is that
estradiol may be produced intraprostatically via conversion
of testosterone by aromatase expressed in stroma[41]. A
small number of studies has examined polymorphisms in
this enzyme, the results of which are described latter.

The nature of the effect of estrogens on prostate cancer
risk may depend on the timing of exposure. In an animal
model, high exposure to estrogens early in life promotes
chronic inflammation in the prostate in adulthood[42].
Intraprostatic inflammation, which is a common finding in
biopsy specimens[43], radical prostatectomy specimens[44]
and in tissue resected for treatment of benign prostatic hyper-
plasia[45,46], is receiving renewed interest for its role in the
etiology of prostate cancer[47]. At the present, it is not fea-
sible in epidemiologic studies to directly evaluate how early
life exposure to higher ranges of estrogens may influence
risk of prostate cancer later in life, although some indirect
evidence that obesity, as a possible indicator of a higher
ratio of estrogens to androgens, early in life is associated
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repeats, the greater the transactivational activity of the recep-
tor [56,57]. The typical range of CAG repeats is 11–31[58].
Human evidence for the significance of the length of this re-
peat is that men who inherit 40 or more androgen receptor
gene CAG repeats suffer from Kennedy’s disease (spinobul-
bar ataxia)[59,60]. This condition is characterized by andro-
gen insensitivity due to the direct effect of the expansion of
the CAG repeats on androgen receptor activity and progres-
sive muscle weakness and atrophy as a result of the loss of
brain motor neurons. It is unclear how expansion of the CAG
influences this latter effect. Across the normal range of CAG
repeat lengths there is evidence for differences in functional
activity; men with longer CAG repeats were more likely to
have defective sperm production than men with shorter re-
peats[61]. Shorter CAG repeat lengths are also associated
with a higher risk of benign prostatic hyperplasia[62,63].

Several[64–70], but not all [18,71–80], epidemiologic
studies support that shorter androgen receptor gene CAG re-
peats are associated with a higher risk of prostate cancer. Of
these studies, three were prospective designs, one conducted
largely in the pre-PSA era[67], one that straddled the PSA
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Aside from direct signaling by estrogen through its ste
eceptor, estrogen may influence prostate cancer risk v
utagenic metabolites. Certain catechol metabolites of e
en, including 2-hydroxyestradiol and 4-hydroxyestrad
ay be converted in situ into DNA damaging agents[52].
his pathway may be of particular importance in men ta
rugs like finasteride and dutasteride, in whom intrapros

evels of testosterone may be increased by competition
hese drugs for the catalytic site in the enzyme 5�-reductas
ype 2. The excess testosterone may be converted to
iol in greater proportions than ordinarily. As a start to
irectly examine this hypothesis, polymorphisms in ge

hat encode enzymes that catalyze the generation of
en metabolites (CYP1A1andCYP1B1—described in thi
eview below) or that detoxify these metabolites (COMTand
STs—not described in this review) have been evaluate

elation to prostate cancer.

. Sex steroid hormone receptors and co-activators

.1. The androgen receptor

The actions of testosterone and dihydrotestosteron
ndrogen-responsive tissues are mediated by the and
eceptor[53]. This receptor is sometimes mutated in pros
ancers with various predicted effects on its functiona
54] and possibly a wider array of activating steroid
-

ra [78] and one fully in the PSA-era[18]; differences in
he case mix in these studies with similar design may
lain some of their differences in findings. In the Physicia
ealth Study, risk appeared to increase monotonically
ecreasing CAG repeat number, but the association wa

ted to advanced cases[67]. On careful consideration, grea
onsistency was found among studies that included h
roportions of advanced cases or that were conducted
re-PSA era and in the stratum of men who had a yo
ge at onset of prostate cancer[81]. Also, some variability in
ndings among the studies may be due to small sample
nd the resultant imprecision in the estimation of the rela
isk for extreme contrasts in number of CAG repeats.

A second polymorphic androgen receptor gene tr
leotide repeat has also been described in exon 1 co
ng of GGN (N, any of the four nucleotides) repeats enc
ng polyglycine[82]. This repeat is not as polymorphic
he CAG repeat; about 85–90% of individuals have the m
revalent allele or one longer[83]. The association betwe

he androgen receptor gene GGN repeat has not been c
ent among studies[64,66,68,71,76,78,84,85]. Contributing
o the inconsistency in findings is the use of different crit
or counting the number of repeats (e.g, GGC only ve
GN) and the use of different repeat length classifica

chemes for modeling (e.g., short versus long, most com
ersus less common).

One other polymorphism in the androgen receptor g
as been evaluated. Two studies have reported positive
iations between the S1 allele (variant allele, leads to lo
estriction site) for the StuI restriction site polymorphism
odon 211 (G1733A) in exon 1 and prostate cancer ris
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younger African-American men[86] and high grade disease
in Portuguese prostate cancer cases[87]. This polymorphism
is in linkage disequilibrium with the CAG and GGN repeats
[87] and thus whether this polymorphism has effects inde-
pendent of the repeated sequences is unknown.

Further attempts to clarify the relation of repeated se-
quences in the androgen receptor gene with prostate can-
cer risk may include considering the joint association of the
CAG and GGN repeats and the joint associations of circu-
lating androgen concentrations with both of the repeats. Al-
though several studies have evaluated interactions between
the two repeated sequences[64,66,68,71,76,78,84], substan-
tially larger sample sizes are needed to evaluate the joint as-
sociations at cutpoints other than the mean/median for both
repeats, which tend to be conservative and may result in the
inability to statistically detect interactions. As for circulating
hormones, the association of these androgen receptor gene re-
peats may be most apparent in advanced cases, in particular
those detected in the era prior to the widespread screening for
elevated PSA or in susceptible subgroups (e.g., defined by age
or family history) or in subgroups where obfuscation by com-
peting pathways is limited (e.g., normal weight men). Given
the findings of the PCPT, future analyses should pay particu-
lar attention to the relation of the CAG and GGN repeats with
high- and low-grade disease. Perhaps more difficult to evalu-
a nds
t when
c

3

rs
( e
l l

for prostate development[42]. Unlike the androgen recep-
tor, only a handful of case-control studies have evaluated
polymorphisms in the ER� gene, located on the long arm
of chromosome 6. Several polymorphisms have been evalu-
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regulators for signaling, including the androgen receptor
ARA co-regulators[92] and the estrogen receptor AIB-1
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.2. The estrogen receptor

The prostate expresses both� and� estrogen recepto
ER) at low levels[89]. Expression of ER� appears to b
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able 1
olymorphism in the estrogen receptor-� and risk of prostate cancer

olymorphism

GGA repeat in intron 1
C

→ C, intron 1, PvuII restriction site (CATCTG) C
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→ G, intron 1, XbaI restriction site
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CC→ GCC, codon 87, synonymous–alanine-A
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studies is not directly apparent. In the former study, the 26/26
genotype was uncommon and is probably not important
for prostate cancer at least in the white population[95].
Nevertheless, because of their importance in steroid hormone
signaling, the identification of polymorphisms in principal
co-activators and co-regulators of androgen receptor and
estrogen receptor activation is needed.

4. Sex steroid hormone synthesis and metabolism

Shown in figure is the androgen and estrogen synthetic and
metabolic pathway in the testis, prostate, and liver (excluded
adrenal sources for simplicity) and the genes that catalyze
the steps in the pathway. Many of the genes in this pathway
are polymorphic, although with the exception ofSRD5A2,
encoding 5�-reductase type 2, andCYP17, encoding steroid
17�-hydroxylase/17,20 lyase, variations in these genes have
been understudied for their relation with prostate cancer. The
recent availability of high-throughput technology has con-
tributed to recent flurry of publications evaluating polymor-
phisms in many of the other genes involved in androgen and
estrogen synthesis and metabolism; however, the majority of
these studies are small to moderate sized retrospective case-
control studies in which it is unclear whether the comparison
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etiology of prostate cancer. The functional significance
of many of these polymorphisms is unknown. Clearly,
more work is needed to understand the influence of normal
sequence variants in these genes on risk of prostate cancer
and it pathological characteristics.

4.1. Steroid 17�-hydroxylase/17,20 lyase (CYP17)

The enzyme encoded byCYP17catalyzes two reactions
in testosterone synthesis pathway (figure), pregnenolone to
17�-hydroxypregnenolone via its 17�-hydroxylase activity
and the latter to dehydroepiandrosterone via its 17,20 lyase
activity in the testis[100].CYP17is located on the long arm
of chromosome 10. In a meta-analysis of 10 case-control
studies published through 2002, there was no overall associ-
ation between a substitution of C for T inCYP17that exists
34 basepairs upstream of the translation start site, but down-
stream of the transcription start site and prostate cancer[101].
Subsequent case-control studies also did not observe an asso-
ciation [97,102]. One recently published case-control study
in China suggested a higher risk of prostate cancer for having
at least one T allele[103]. The effect of this polymorphism
on the production, stability, or activity of the enzyme is un-
known, but does not appear to influence circulating hormone
concentrations in men[103–105].
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.2. Steroid 5�-reductase type 2 (SRD5A2)

The conversion of testosterone to dihydrotestostero
atalyzed in the prostate by 5�-reductase type 2 (Fig. 1),
hich is encoded by SRD5A2 on chromosome 2.
ydrotestosterone has greater affinity for the andro
eceptor, resulting in greater transactivation of andro
esponsive genes. Genetically male individuals who
eficient in this enzyme because of mutation[106] exhibit
seudohermaphroditism prior to puberty, but bec
ore phenotypically male during puberty[107] due to

onversion of testosterone to dihydrotestosterone cata
y 5�-reductase type 1 expressed in skin.

Several polymorphic regions inSRD5A2have been iden
ified. A TA dinucleotide repeat in the 3′-untranslated regio
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he TA repeat[108]. However, men with at least one threon
llele for the A49T polymorphism had lower androstane
lucuronide[108]and men with both leucine alleles for V8
ossibly may have lower plasma androstanediol glucuro
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ized effect of the TA repeat (i.e., that longer repeats wou
ssociated with a higher risk)[75,109,111–113]. A Canadian
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Table 2
Association of polymorphisms in genes that are involved in androgen synthesis or metabolism with prostate cancer

Gene Enzyme activity Polymorphism Association with prostate cancer

HSD17B3
Expressed in testis 17�-hydroxysteroid dehydrogenase

type 3 metabolizes androstenedione
to testosterone

Glycine (G-GGT→ Serine
(S-AGT), codon 289

Serine/serine or glycine/serine vs. glycine/glycine:
OR = 2.5, 95% CI 1.03–6.07[148].

CYP3A4 Nifedipine oxidase deactivates
testosterone via hydroxylation

A → G, nucleotide-290 G/G or A/G vs. A/A: OR = 2.7, 95% CI 0.77–7.66
(prospective study of men with BPH followed for 11
years)[149]
G/G or A/G vs. A/A

African-Americans: OR = 4.1, 95% CI 1.3–12.2
Whites: OR = 2.3, 95% CI 1.1–4.5
Nigerians: no positive association

Findings possibly attributable to population
stratification[150]
G/G or A/G vs. A/A: worse clinical characteristics at
diagnosis

Whites: OR of high stage = 2.10, 95% CI 1.09–
4.05[151]
African-Americans: OR of high grade = 1.6, 95% CI
0.7–3.6[152].

A → G, nucleotide−392 G/G or A/G vs. A/A
No association with prostate cancer overall

Whites
OR of nonaggressive = 0.08, 95% CI 0.01–0.59
OR of high aggressive = 1.91, 95% CI 1.02–3.57

African-Americans
No association with disease aggressiveness[97,153]

HSD3B1
Expressed in prostate 3�-hydroxysteroid dehydrogenase

type I metabolize
dihydrotestosterone to inactive
metabolites

Asparagine
(N) → threonine (T), codon
367

Threonine/threonine or asparagines/threonine vs.
asparagine/asparagine: OR = 1.50, 95% CI 1.04–2.17
[154]

T → C, nucleotide 7062 No association[154]

HSD3B2
Expressed in testes 3�-hydroxysteroid dehydrogenase

type 2 metabolizes
dihydrotestosterone to inactive
metabolites

C→ T, nucleotide 7474, 3′
untranslated region

No association[154]

C→ G, nucleotide 7519. 3′
untranslated region

No association[154]

Threonine/threonine or asparagines/threonine at codon
367 and G/G or C/G at nucleotide 7519 vs.
asparagine/asparagine and C/C: sporadic: OR = 1.61,
95% CI 1.07–2.42; familial: OR = 2.17, 95% CI
1.29–3.65[154]

cancer for the valine allele at codon 89 in men undergoing
biopsy for elevated PSA/DRE[114]. Also, men with prostate
cancer who were prospectively followed were at a higher risk
of biochemical progression (i.e., PSA re-elevation months to
years after prostatectomy) if they carried the valine allele
[114]. A case-control study in Japan reported a higher risk of
prostate cancer for the valine allele, but no association with
grade or stage[115]. Other studies suggest that leucine ho-
mozygotes were more likely to have metastatic disease[116],
are more likely to experience biochemical failure[117], or

have a higher risk of prostate cancer[75,97]. No statisti-
cally significant inverse association has been found for the
V89L polymorphism and prostate cancer in several other
studies[100,109,112,116,118–121], including prospective
studies[110,113]. Also, the V89L polymorphism was not
clearly associated with tumor pathological characteristics
[118]. The A49T substitution was associated with a higher
risk of prostate cancer or poorer grade disease in some studies
[112,118,122], but not elsewhere[75,97,113,116,121,123].
A meta-analysis of the studies reporting on the A49T, V89L,
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Table 3
Association of polymorphisms in genes that are involved in estrogen synthesis or metabolism with prostate cancer

Gene Enzyme activity Polymorphism Association with prostate cancer

CYP19 Aromatase catalyses the conversion
of testosterone to estradiol in fat and
in prostate stroma[41]

Arginine (C
nucleotide)→ cysteine (T
nucleotide), codon 264

Arginine/cysteine (C/T) vs. arginine/arginine (C/C): OR = 2.50,
95% CI 0.99–6.28 (T/T not observed)[77]

Cysteine/cysteine (T/T) vs. arginine/arginine (C/C):
OR of total = 2.08, 95% CI 1.20–3.64
OR of high grade = 5.50, 95% CI 3.16–9.59[146]

(TTTA)n in intron 4 171 vs. 167 base-pair allele: OR = 1.58, 95% CI 1.00–2.51
187 vs. 167 base-pair allele: OR = 1.41, 95% CI 1.01–1.98[75].

CYP1A1 Aryl hydrocarbon hydroxylase
catalyzes the conversion of estradiol
to 2-hydroxyestradiol[52] and the
activation of environmental
carcinogens such as polyaromatic
hydrocarbons

Isoleucine (I–A nucleotide at
2455)→ valine (V-G nucleotide
at 2455), codon 462

Valine/valine vs. isoleucine/isoleucine
OR = 2.4, 95% CI 1.01–5.57[155]
OR of total prostate cancer = 1.91, 95% CI 1.09–3.32

OR of high vs low grade = 1.60, 95% CI 0.93–2.63
OR of high vs low stage = 4.04, 95% CI 2.35–6.96[156]

G allele (valine) less common in cases than in controls
(p= 0.03)[99].

T → C, nucleotide 3801, gain
Msp I restriction site

C/C or T/C vs. T/T:
OR of total prostate cancer = 1.40, 95% CI 1.03–1.90

OR of high vs. low grade = 2.04, 95% CI 1.23–3.38
OR of high vs. low stage = 4.51, 95% CI 2.46–8.27[156]

C/C vs. T/T: OR = 2.35, 95% CI 0.89–6.26[157]
C allele less common in cases than in controls (p= 0.001)[99]

Haplotype for T3801C, A2455G,
and C2453A

T-A-C haplotype more common in cases than in controls

C-A-C haplotype less common in cases than in controls[99].

CYP1B1 Aryl hydrocarbon hydroxylase
catalyzes the conversion of estrogens
to 4-hydroxyestradiol[52] and the
metabolism of environmental
carcinogens

Alanine (A-G at nucleotide
355)→ serine (S–T at nucleotide
355), codon 119

Serine/serine (T/T) vs. alanine/alanine: OR = 4.02, 95% CI
1.73–9.38[158]

Serine/serine (T/T) and alanine/serine (G/T) more common in
sporadic cases than in controls (p= 0.8), but not more common
in familial cases (p= 0.55)[98].

A → G, nucleotide-1549 No association[98].
C→ T, nucleotide-1001 T/T and C/T less common in sporadic cases than controls

(p= 0.04), but not less common in familial cases[98]
G→ A, nucleotide-263 A/A and G/A less common in sporadic cases than in controls

(p= 0.03), but not less common in familial cases[98]
C→ T, nucleotide-13 No association[158]

T/T and C/T less common in sporadic cases than in controls
(p= 0.02), but not less common in familial cases[98]

Arginine (R-C at nucleotide
142)→ glycine (G-G at
nucleotide 142), codon 48

No association[158]

G/G and C/G less common in sporadic cases than in controls
(p= 0.04), but not less common in familial cases[98]

Leucine (L-C at nucleotide
4326)→ valine (V-G at
nucleotide 4326), codon 432

No association[98,158]

C (nucleotide 4379)→ T
(nucleotide 4379), codon
449(aspartate-D-synonymous)

No association[98,158]
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Table 3 (Continued)

Gene Enzyme activity Polymorphism Association with prostate cancer

asparagine (N-A at nucleotide
4390)→ serine (S-G at nucleotide
4390), codon 453

Serine allele not observed[158]

G/G and A/G more common in sporadic (p= 0.11) and familial
cases (p= 0.14) than in controls[98]

C→ A, nucleotide 3653 No association[98]
T → G, nucleotide 5359
A → G, nucleotide 5639
A → T, nucleotide 7072

Haplotype for C–1001T, G–263A,
C–13T, C142G, T355G

C–G–C–C–G haplotype more common in sporadic cases than in
controls (p = 0.29), but not more common in familial cases
T–A–T–G–T haplotype less common in sporadic cases than in
controls (p= 0.057), but not more common in familial cases[98].

and the TA repeat polymorphisms in relation to prostate can-
cer through 2002 reported summary odds ratios for the thre-
onine versus alanine allele of 1.56, and when omitting the
Makridakis et al.[122]results, the study that initially reported
a positive association, of 1.08 (95% CI 0.72–1.61), for the
leucine versus valine allele of 1.02 (95% CI 0.94–1.11), and
for longer versus shorter TA repeats 0.85 (95% CI 0.64–1.12)
[124]. Another polymorphism, C682G, which is located 12
nucleotides upstream of the transcription start in the 5′-
untranslated region, was not associated with sporadic prostate
cancer in a case-control study[121].

F
l

At the present, there is no compelling evidence for a strong
effect of polymorphisms inSRD5A2on risk of prostate can-
cer. However, more work is needed to define the influence
of polymorphisms inSRD5A2in relation to early versus ad-
vanced prostate cancer, grade of disease, and survival with
prostate cancer.

5. Racial variation in sex steroid hormones and
hormone signaling

Racial variation in prostate cancer incidence and mortality
rates in the US is pronounced. African-American men have
the highest prostate cancer incidence rate (standardized to
2000 US population age standard, 1992–1999: 275.3 per
100,000 men annually) and mortality rate (75.1 per 100,000
men annually) among any racial or ethnic group in the US.
By comparison, the incidence and mortality rates are 1.6
(172.9 per 100,000 men) and 2.3 (32.9 per 100,000 men)
times that for whites, respectively. Prostate cancer incidence
and mortality rates for Asian/Pacific Islander, American In-
dian/Alaskan Native, or Hispanic are substantially lower than
those for white Americans[125]. In addition to prostate can-
cer being more frequently diagnosed in African-American
men, the putative precursor lesion for prostate cancer, high-
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Evidence for racial variation in circulating concentrations
of sex steroid hormones and in the prevalence of polymor-
phisms in steroid receptors and enzymes involved in the
synthesis or metabolism of hormones is discussed and future
research needs are described.

5.1. Sex steroid hormones

In some modest sized cross-sectional studies
[25,129–132], adult African-American men have had
higher mean circulating concentrations of testosterone or
other androgens than similarly aged white men, with differ-
ences in levels being greater in young adulthood (10–20%
[25,129]) than in mid-adulthood (3%[130]). Statistically
significant differences in testosterone concentration between
middle-aged and older black and white men were not seen in
two studies[127,133,134]. In a subset of 483 black and 695
white men aged 24–30 years old at baseline who participated
in the CARDIA study, black men had a 3% higher mean
serum testosterone concentration than white men after
adjusting for age, body mass index at baseline and change
in body mass index over three assessments of hormones in
blood samples that spanned 8 years[135]. The slopes of
the decrease in testosterone with age were similar between
black and white men. After further adjusting for baseline
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in males is at the nadir at birth compared to midway through
gestation. Whether racial variability in fetal testosterone
production exists during gestation is not known. Although
testosterone concentrations are at their lowest point at birth,
additional evaluation of this hypothesis is needed using cord
blood samples after exclusions for pregnancy conditions that
are known to influence hormone levels (e.g., pre-eclampsia)
and adjusting for non-inherent determinants of hormone
levels that may also differ by race (e.g., parity).

5.2. Sex steroid hormone receptors

Many studies have now observed that African-American
men have on average fewer androgen receptor gene CAG
repeats than whites, typically a two repeat difference
[58,64,127,139–144]. Some[58,64,139], but not all [127],
studies have found that Asian men have a greater number
of repeats (mean of∼0.5–1.0 difference) than whites. One
study also considered Hispanic white men, who had a mean
that was one repeat longer than whites[143]. Although the
mean difference in repeat length is small, we have previously
estimated that the two repeat decrement on average between
blacks and whites might account for as much as a 15% higher
risk of prostate cancer[127]. How much of the difference in
risk of prostate cancer between black and white men would
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cancer also differs by race). What may differ, however, is
the proportion of the risk of prostate cancer in a particular
racial group that is attributable to a given polymorphism.
Despite any racial variation in the frequencies of alleles for
genes encoding hormone metabolism enzymes, it remains
to be demonstrated whether any of these polymorphisms are
associated with risk of prostate cancer, irrespective of race.

6. Conclusions

Epidemiologic evidence that normal variation in circulat-
ing concentrations of androgens, estrogens, and sex hormone
binding globulin, normal sequence variation in genes that
encode the androgen and estrogen receptors, and normal se-
quence variation in genes that encode enzymes involved in the
biosynthesis or the inactivation of androgens and estrogens
contribute to the development of prostate cancer is weak to
modest at the present. The primary result of the Prostate Can-
cer Prevention Trial confirms that physiologic intraprostatic
dihydrotestosterone levels are permissive for the growth of
prostate adenocarcinoma. However, the secondary result of
higher-grade disease in men in the finasteride arm coupled
with clinical studies showing higher-grade disease in non-
metastatic cases with lower serum androgens, if not a patho-
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pretation may also arise in genetic association studies of
prostate cancer because typically only a single polymorphism
is considered, often without knowledge of its functional con-
sequence or its relation to other polymorphisms in that gene,
or without consideration of other genes involved in the same
pathway. Evaluation of haplotypes and diplotypes to com-
plement alleles and genotypes is now in fashion, although the
effectiveness of this approach remains to be demonstrated.

A major challenge in prostate cancer epidemiology is
to uncover whether variability in the sex steroid hormone
pathway contributes to the higher risk of prostate cancer in
African-American men and the lower risk of prostate cancer
in Asian men, both compared to white men. The possibly mi-
nor physiologic effects of sequence variants that differ among
the racial groups in genes involved in hormonal pathway may
sum to have sufficient differences in biological activity on
the prostate such that racial differences in the incidence of
prostate cancer would be detectable. Possible biological ef-
fects of genetic polymorphisms that vary by race and that
might influence risk of prostate cancer later in life that should
be evaluated include the early life factors age at onset of pu-
berty and the rate of prostate growth and maturation.
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